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Abstract

Whether anthropogenic mortality is additive or compensatory to natural mortality in animal populations has long been a
question of theoretical and practical importance. Theoretically, under density-dependent conditions populations
compensate for anthropogenic mortality through decreases in natural mortality and/or increases in productivity, but
recent studies of large carnivores suggest that anthropogenic mortality can be fully additive to natural mortality and
thereby constrain annual survival and population growth rate. Nevertheless, mechanisms underlying either compensatory
or additive effects continue to be poorly understood. Using long-term data on a reintroduced population of the red wolf,
we tested for evidence of additive vs. compensatory effects of anthropogenic mortality on annual survival and population
growth rates, and the preservation and reproductive success of breeding pairs. We found that anthropogenic mortality had
a strong additive effect on annual survival and population growth rate at low population density, though there was
evidence for compensation in population growth at high density. When involving the death of a breeder, anthropogenic
mortality was also additive to natural rates of breeding pair dissolution, resulting in a net decrease in the annual
preservation of existing breeding pairs. However, though the disbanding of a pack following death of a breeder resulted in
fewer recruits per litter relative to stable packs, there was no relationship between natural rates of pair dissolution and
population growth rate at either high or low density. Thus we propose that short-term additive effects of anthropogenic
mortality on population growth in the red wolf population at low density were primarily a result of direct mortality of adults
rather than indirect socially-mediated effects resulting in reduced recruitment. Finally, we also demonstrate that per capita
recruitment and the proportion of adults that became reproductive declined steeply with increasing population density,
suggesting that there is potential for density-dependent compensation of anthropogenically-mediated population
regulation.
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Introduction

The effects of human-caused mortality on the population

dynamics of wild species has long been a topic of both theoretical

and management interest, and continues to be relevant for

protection of small and recovering populations and establishment

of sustainable targets for harvest. A major debate has centered on

whether anthropogenic mortality is additive to natural mortality,

resulting in a net reduction in total survival rates, or whether

increased anthropogenic mortality is compensated for by a

reduction in natural mortality, leaving the total survival rate

unchanged [1]. In the latter scenario, compensation should be

manifest through density-dependent mechanisms, where anthro-

pogenic mortality triggers a release of limited resources that can

enhance survival and recruitment in the remaining population,

thereby buffering any negative effects on population growth.

Empirical evidence suggests that compensation only occurs up to a

certain threshold of anthropogenic mortality, above which a

population can no longer sustain a stable or increasing growth

rate, and begins to decline (e.g., [2–5]). However, the threshold at

which compensatory mechanisms become insufficient and anthro-

pogenic mortality becomes additive is a matter of intense debate

(e.g., [6–9]), with recent studies in large carnivores suggesting that

in some cases anthropogenic mortality can in fact be largely or

fully additive [10–12].

Major mechanisms proposed for compensation in large

carnivores, should it occur, include increased natural survival

rates, increased birth rates and/or recruitment, and (in a

metapopulation context) increased immigration or reduced

emigration [7,8,13,14]. However, evidence for the first two

mechanisms is lacking, and it has been argued that where the

effects of density are not strong and resources are not sufficiently

limited, compensation via changes in natural survival and

productivity rates will not necessarily occur [8,12]. Furthermore,
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even at high densities, natural causes of death may not always be

density-dependent (e.g., intraspecific strife, disease, or accident)

[8]. In addition, the indirect, or sublethal effects of anthropogenic

mortality remain largely unexplored, though there is evidence

from several wolf populations that anthropogenic mortality can

significantly disrupt natural social structure, and death of breeders

can have important consequences for pup survival [15–18]. Thus,

rather than benefiting from a general reduction in population

density, productivity of breeding groups may suffer from loss of

adult members, particularly in species with prolonged juvenile

dependency.

In-depth studies of additive vs. compensatory mortality in

wolves have primarily been conducted as meta-analyses incorpo-

rating data from diverse wolf populations worldwide with differing

levels of population density and rates of immigration/emigration,

and largely uncharacterized pedigrees and social dynamics (e.g.,

[7,8,12,19]). While an inter-population meta-analysis can be a

powerful tool for discerning broad-scale trends, analyses of single

populations that can more thoroughly examine the roles of key

factors such as population density and social dynamics on

population-level responses to anthropogenic mortality are sorely

needed. We explored the direct and indirect consequences of

anthropogenic mortality in a reintroduced population of the red

wolf (Canis rufus). Once distributed throughout the southeastern

United States, the red wolf was declared extinct in the wild in 1980

but was successfully reintroduced into the Alligator River National

Wildlife Refuge in North Carolina in 1987, as a result of a captive

breeding program [20,21]. Though a protected species, the red

wolf is subjected to high levels of anthropogenic mortality from

poaching, vehicle collision, and selective removal [22]. As this is

the sole free-ranging population of the red wolf, it is an ideal

system for examining the reproductive and survival effects of

anthropogenic mortality unobscured by immigration of new

wolves into the study area. Extensive monitoring of the

reintroduced population since its inception has provided invalu-

able information on times and causes of death, population-wide

pedigree, pack social dynamics, and estimates of population size.

Using this information, we were able to explore the effects of

anthropogenic mortality on natural and total survival rates,

preservation of social bonds, reproductive success, and ultimately,

population growth during periods of both high and low population

density.

We hypothesized two main mechanisms through which

anthropogenic mortality could affect population growth rate.

First, anthropogenic mortality could have direct consequences for

the number of adults in the population from one year to the next,

either by directly reducing survival rates of existing adults or

juveniles that would otherwise have been recruited into adulthood.

Second, anthropogenic mortality could also exert indirect,

sublethal effects on recruitment in so far as it results in loss of

one or both members of a breeding pair, both of which normally

provide care for pups [12,15]. Since this population of red wolves

was at small, increasing densities from 1990–1998, but reached

relatively high and stable levels from 1999–2006 ([21], Fig. S1), we

also hypothesized that additive effects on population growth,

should they occur, would be strongest during the time period with

low population density, when possibilities for density-dependent

compensation are low.

To test for evidence of additive vs. compensatory effects of

anthropogenic mortality, we used standard methods of regressing

annual anthropogenic mortality rate on annual natural mortality,

total survival and population growth rates. We took the analysis

one step further by testing for additive vs. compensatory effects of

anthropogenic mate loss on the annual natural dissolution of

breeding pairs, total preservation of breeding pairs and population

growth rates. We also tested for differences in fall (6-month-old)

litter size between stable and packs and those that transitioned to

new breeders or disbanded following the death of an existing

breeder, to determine whether increases in breeder mortality could

have indirect consequences for pup recruitment. Finally to assess

the potential for compensatory responses to anthropogenic

mortality in the long term, we tested for an effect of population

density on per capita pup recruitment and the proportion of

reproductive adults.

Methods

Data Collection
Between 1990–2006, free-ranging red wolves were captured

primarily via foothold traps, equipped with very high frequency

(VHF) radio-collars and subsequently monitored intensively to

gather detailed information on mortality, reproduction, and pack

affiliation [22]. Annual wolf population size estimates for the

recovery area were taken from U.S Fish and Wildlife Service

records ([21], Fig. S1). As an estimate of the number of individuals

residing within a discrete management area, annual population

size was also considered an estimate of annual population density

for the purposes of this study. We restricted our analyses to adults,

defined as individuals of one or more years of age, as detailed

information on numbers and survival of pups from birth was not

available due to the difficulty of monitoring pups at an early age

[7].

Radio-collared wolves were monitored every 3–4 days from the

ground or via fixed wing aircraft. Animals found dead were

promptly retrieved and cause of death ascertained (e.g., see [11]).

Death was attributed to either natural (intraspecific strife, disease,

malnutrition), anthropogenic (illegal take, vehicle collision, han-

dling, wildlife damage control operations, selective removal and

return to captivity), or unknown causes. Selective removal of

animals generally occurred at the request of landowners when wolf

home ranges were established in proximity to livestock and

depredation events had occurred. The effects of management-

related deaths such as handling and selective removal are not

generally included in individual-based survival analyses. However,

we considered these as anthropogenic deaths for our population-

level analyses, since anthropogenic removal of animals from the

population likely has functionally equivalent effects on annual

survival, pack dynamics, and population growth rates, irrespective

of its specific cause. However, the same trends were upheld even

when management-related deaths are censored (see Table S1).

There were 175 mortality events from 1990–2005, with 61% of

all mortalities attributed to anthropogenic causes, 20% to natural

causes, and 19% to unknown causes. Similarly high levels of

anthropogenic mortality in the gray wolf are described in Murray

et al. 2010 [11]. To be conservative, deaths due to unknown

causes were considered to be ‘‘natural’’ for the purposes our

analyses; however, inclusion of unknown deaths in the anthropo-

genic sample provided qualitatively similar results (see Table S2).

During the study period 86 (33% of monitored individuals) wolves

were censored. If all of these actually represented mortality events,

they would comprise 33% of all mortalities, which is less than

censoring rates in recent wolf survival studies [11,23]. Notably, the

proportion and influence of censored individuals is not often

detailed in survival analyses [24], and we ascertained that

considering censored animals as anthropogenic deaths did not

have qualitative effects on our results (see Table S3).

Our detailed telemetry records allowed us to reconstruct social

dynamics and behaviour of animals following mortality of other

Additive Effects of Anthropogenic Mortality
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members of the social group. Instances of pair-bond dissolution

were identified where one member of a breeding pair died,

disappeared, or dispersed to a new location without his/her mate.

There were 65 cases of pair bond dissolution during the study

period, 42% due to anthropogenic deaths, and 58% due to natural

causes (of these, 24% to natural death, 42% to dispersal, 11% to

unknown death, and 24% to censoring).

Red wolves generally live in family groups with one breeding

pair, older offspring, and pups [25]. Subsequent to the loss of one

breeder, 48% of packs were disbanded and not replaced by new

residents of their home range for one or more breeding seasons.

The remaining 52% of packs retained the surviving breeder (who

took on a new mate and recommenced reproduction after 0–3

breeding seasons), or rapidly transitioned to two new breeders.

The number of recruits per litter in packs that were stable, with

both parents remaining, or transitioned or ended following the loss

of a parent within their first 6 months of life, was defined as the

number of pups that survived from their spring birth to be counted

by researchers the following fall (at approximately 6 months of

age). The identity of breeding pairs and their corresponding

offspring was determined from pedigree information for the

population, as generated at 18 microsatellite loci via the program

CERVUS 2.0 ([26]; for detailed genetic methods see [27]).

Statistical Analyses
We used the Heisey-Fuller method to calculate estimates of

annual survival and cause-specific mortality using telemetry data

[28]; this method is equivalent to a piecewise exponential model

and tends to perform well for wolf survival data derived from

radio-telemetry, where intra-annual variability in hazards is

negligible (e.g., [11,23]). The annual rate of preservation of

breeding pair bonds was calculated as the number of pair bonds

preserved (i.e., not broken by anthropogenic or natural causes,

such as natural death or dispersal), divided by the total number of

pairs present in a given year. Annual rates of anthropogenic vs.

natural dissolution of pair bonds were calculated as the number of

pair bonds broken due to anthropogenic or natural causes, divided

by the total number of pairs. The annual population growth rate,

or finite rate of increase (l) for year n, was calculated as the

estimated population size in the year n+1 divided by the

population size in year n.

All analyses were conducted using JMP 8.0.2 (SAS Institute

Inc.). We used regression analysis to test for evidence of additive or

compensatory effects of anthropogenic mortality on total survival

and pair bond preservation. The effects of anthropogenic mortality

were defined as fully compensatory if the slope of the regression

(695% CI) equalled 0, and fully additive if the slope overlapped

21 [29]. The annual survival rate and pair-bond preservation rate

were regressed against mortality rates and pair-bond dissolution

rate, respectively, for both natural and anthropogenic mortality

rates. In addition, annual population growth rate was regressed

against natural mortality rate and pair-bond dissolution rates, and

anthropogenic mortality rate and pair-bond dissolution rates.

Annual population density was included as a covariate for analyses

of population growth rate, as the red wolf population grew over

the study period, and population growth was highest early in the

study while the population was at low density ([21], Fig. S1).

Population density was also included as a covariate for analysis of

annual pair bond preservation, since rates of pair bond

preservation appeared to decline with density (see Table 1), but

was excluded from the analysis of annual survival rate (P.0.1). To

further test for evidence of a compensatory adjustment in natural

rates in response to anthropogenic rates, natural mortality and

pair-bond dissolution rates were regressed against anthropogenic

mortality and pair-bond dissolution rates, respectively, with the

expectation that a negative relationship would imply a compen-

satory response, and no relationship would imply additivity.

To test whether additivty/compensation was occurring in the

same manner at both high and low density time periods, period

could not simply be included as a main effect in our models, as it

was confounded with population density, which explained

continuous variation in some response variables (see above).

However, whether population density was included or excluded

from a model with time period as an effect, there was no significant

interaction between period and anthropogenic rates. Thus, there

was no statistical evidence for differences in additivity/compen-

sation between the two time periods. However, since there was

very low power for detecting an interaction due to limited sample

size (n = 9 years for the low density time period, n = 7 years for the

high density time period), we conducted our analyses by time

period as well as using both periods combined, to determine

whether results were consistent at high and low density periods.

Model comparisons using Akaike’s Information Criterion

adjusted for small samples (AICc) were initially performed to

assess whether linear or polynomial models provided the better fit

for these regressions [30]. However, as linear models provided the

best fit for all regression models without exception (DAICc.2), we

do not present these results here. Durbin-Watson tests were

performed for all regression analyses to test for potential

autocorrelation between sequential data, but no evidence of serial

autocorrelation was detected (all P.0.1).

We used mixed-model analysis to test for an effect of pack

status—stable (n = 115 litters), transitioned due to breeder loss

(n = 16), or ended due to breeder loss (n = 17)—on the number of

pups recruited per litter. Sample sizes for the different groups were

unbalanced, but a Brown-Forsythe test suggested no evidence for

unequal variance (P.0.1). Since the analysis included 148 litters in

total, some of which originated from the same breeding pair, dam

Table 1. Regression analyses of annual rates of survival and preservation of pairs in relation to rates of natural and anthropogenic
mortality and their effects on pair bonds.

Response Effects df F P slope

Adult survival natural mortality 1,14 9.18 0.0090 21.77 (23.03, 20.51)

anthropogenic mortality 1,14 76.74 ,0.0001 20.95 (21.18, 20.72)

Preservation of pairs natural pair dissolution 1,13 8.77 0.0103 20.91 (21.57, 20.25)

anthropogenic pair dissolution 1,13 33.39 ,0.0001 21.00 (21.37, 20.63)

population density 1,13 12.27 0.0039 ,

Relevant slopes and 95% confidence limits are given.
doi:10.1371/journal.pone.0020868.t001
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was included as a random effect. Age of dam and population

density were initially included as covariates, but as both were non-

significant (P.0.1), they were excluded from the final analysis.

To assess the relationship between density and reproduction at a

population level, and thereby the potential for compensation in the

long term, we tested for a relationship between the annual

recruited pup to adult female ratio, and the total number of adult

females in the population in a given year (which is directly

proportional to population size). We also compared the proportion

of adult females and males that were reproductive during three,

rather than two time periods, for finer resolution since sample sizes

were sufficient: 1988–1993, just subsequent to reintroduction

when the population was small; 1994–1998, when the population

was steadily growing; and 1999–2007, when the population was

high and relatively stationary (see [25]).

Ethics Statement
The field work on red wolves was conducted solely by the U.S.

Fish and Wildlife Service and all work and procedures conformed

to national standards for wildlife handling [31].

Results And Discussion

Anthropogenic Effects on Annual Rates
We found strong evidence that anthropogenic mortality is

additive to natural mortality in the reintroduced red wolf

population, with higher adult anthropogenic mortality resulting

in lower annual adult survivorship (Table 1; Fig. 1A). These

findings are consistent with recent studies in the gray wolf where

anthropogenic mortality was found to be additive to natural

mortality rates [11,12]. Moreover, we also found evidence that

Figure 1. Annual survival rate (a) and pair preservation rate (b) for the red wolf. Values for (b) are corrected for density.
doi:10.1371/journal.pone.0020868.g001
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anthropogenic mortality had an additive effect on the annual

preservation of pair bonds, with higher levels of anthropogenic

mate loss resulting in lower annual preservation of existing

breeding pairs (Table 1; Fig. 1B). Lack of compensation in either

survival or pair-bond preservation was further demonstrated by

lack of a relationship between natural rates of mortality and pair-

bond dissolution and their respective anthropogenic rates

(Mortality—F1,14 = 0.126; P = 0.74; Pair-bond dissolution—

F1,14 = 0.085 ; P = 0.78).

The additive effects of anthropogenic mortality itself translated

to a linear decrease in population growth rate (Table 2; Fig. 2).

Consistent with trends reported in meta-analyses of gray wolf

populations [12,18], this suggests that even low levels of

anthropogenic mortality can play a constraining role in red wolf

population growth. There was no evidence of a threshold at which

anthropogenic rates transitioned from a compensatory to an

additive effect, as has been suggested in other studies (e.g., [4,5,8]).

However, one important caveat is that though there was no

evidence of serial autocorrelation in our sample, additive trends for

survival were largely driven by points representing the years 1990–

1998, when the population was still actively growing (F1,6 = 16.10;

P = 0.007; Fig 2), and were not evident between 1999–2005, when

the population was relatively stationary (F1,5 = 0.63 ; P = 0.46;

Fig. 2). Since anthropogenic mortality rates during 1999–2005 did

not show as much variation as those during 1990–1998, this lack of

a trend could be an artefact of small sample size. However, it is

also possible that additive effects are stronger at lower density,

when density-dependent effects are weaker, which would be

predicted by theory.

Nevertheless, strong additive anthropogenic effects on annual

survival were evident during both time periods (1990–1998:

F1,7 = 43.11; P,0.001; 1990–2005: F1,5 = 7.71; P = 0.039), sug-

gesting that if compensation at the level of population growth does

occur at high density, it operates through mechanisms other than

those considered here. The effects of anthropogenic mortality

during periods of increasing and stationary trajectories within a

single population have not been explored in detail in previous

studies, so further research is clearly needed to test whether

additivity is present to the same degree in both cases.

Remarkably, the regression of population growth rate on

anthropogenic mortality rate (Fig. 1B) suggests a sustainable

‘‘harvest’’ (i.e., level of anthropogenic mortality above which l,1,

and the population begins to decline) of approximately 25%,

which is comparable to estimates for the gray wolf, which have

ranged from 20–30% [3,7,8,12]. However, we should note that we

have only one year in which the anthropogenic mortality rate

exceeded this level, and additional points in the upper range could

alter the slope of the regression. This lack of information on the

effects of high levels of anthropogenic mortality also limits our

present ability to determine whether, if there are indeed

compensatory forces acting at high density (1999–2005), they

become insufficient to sustain the population at anthropogenic

mortality rates higher than 25%. Whatever the case, in

populations such as this where population growth is the desired

end of the reintroduction program, these findings suggest that

anthropogenic mortality rates substantially lower than 25% are

necessary to achieve positive growth rates, particularly at low

population density.

Mechanisms Underlying Additive Effects on Population
Growth Rate

In an isolated population with no possibility of immigration

from an adjoining population, there are two main mechanisms

through which an additive effect of anthropogenic mortality could

be manifest on population growth rate from one year to the next:

(1) a direct reduction in numbers of existing adult and juveniles

recruited to adulthood through mortality, and (2) an indirect

reduction in recruitment of juveniles to adulthood through

dissolution of social groups responsible for rearing pups. Since

more adults die due to natural and anthropogenic causes

combined than to natural causes alone, higher rates of direct

anthropogenic mortality on adults will necessarily result in a

decrease in population numbers, in so far as those numbers are not

replenished through a compensatory response, such as reduced

natural mortality or increased pup production and recruitment. As

previously stated, there was no evidence of a compensatory

response in adult natural mortality rates in the red wolf

population. In the population at large, it may be that the high

level of territoriality and discrete nature of packs make taking

advantage of any localized death-related increase in resource

availability in the short-term difficult for members of other wolf

packs.

As for within-pack dynamics, we found that packs that are

disrupted due to the death of a breeder showed decreased, rather

than increased, numbers of pups recruited per litter (F2,144 = 4.56;

P = 0.012; Fig. 3). Post-hoc analysis suggests that packs that were

subsequently disbanded had the lowest number of recruits, and

packs that retained the surviving breeder, or rapidly transitioned

to a new breeding pair, had intermediate recruitment. Thus,

within packs, any potential release of resources following the death

of a breeder does not appear to compensate for the social benefits

of having both parents present, and may slightly decrease in the

absence of one parent. Furthermore, previous work has shown that

the presence of older siblings in a red wolf pack increases pup

survival at low density, and has no effect on pup survival at high

density [25], suggesting that while competition for resources may

occur among pack members, it may not always be as costly as is

sometimes predicted. A positive association between pack size and

pup survival following breeder loss has also been demonstrated in

the gray wolf [15, but see 32]. Combined, this evidence suggests

that per capita food availability is not a simple driver of survival

and reproductive success, particularly in complex social systems.

Since anthropogenic mortality was responsible for 42% of

breeding pair break-ups, and was additive to natural rates (Table 1;

Fig. 1B), with almost half of all pair break-ups resulting in the

disbanding of a pack, we hypothesized that reduced pup

Table 2. Regression analysis of annual population growth
rate in relation to rates of natural and anthropogenic
mortality and their effects on pair bonds.

Effects df F P slope

natural mortality 1,13 4.23 0.0605 22.73 (25.59,
20.13)

population density 1,13 23.97 0.0003 ,

natural pair dissolution 1,13 0.24 0.6336 ,

population density 1,13 22.57 0.0004 ,

anthropogenic mortality 1,13 18.38 0.0009 21.55 (22.33,
20.77)

population density 1,13 23.97 0.0003 ,

anthropogenic pair dissolution 1,13 11.99 0.0042 21.28 (22.08,
20.48)

population density 1,13 22.57 0.0004 ,

Relevant slopes and 95% confidence limits are given.
doi:10.1371/journal.pone.0020868.t002
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recruitment following anthropogenic loss of breeders could act as

an indirect mechanism for additive effects of anthropogenic

mortality on population growth rate. Indeed, the significant

negative relationship between anthropogenic pair dissolution and

population growth rate could be interpreted as support for this

hypothesis (Table 2). Interestingly, however, the natural rate of

pair dissolution, which includes dispersal as well as mortality

events, was not significantly correlated to population growth rate

(Table 2). This suggests that what might at first glance appear to be

evidence for an additive effect of anthropogenic breeder loss on

population growth may simply reflect a direct effect of loss of

adults in general, and not indirect effects of breeder loss on

recruitment per se. Thus, though here, as in other wolves, breeder

loss by any means appears to have negative consequences for pack

social structure and pup recruitment [15–17], and anthropogenic

mortality can substantially add to these negative effects, the net

effect of breeder loss on population growth rate appears to be

negligible. One important point specifically relevant to this

population, however, is that increases in breeder loss due to

anthropogenic causes may also increase the probability of

hybridization with coyotes (Canis latrans), which is currently a

major threat to the recovery of the red wolf [21, Bohling and

Waits, unpublished data].

Long-Term Potential for Compensation
Compensation is primarily predicted where there is evidence of

negative effects of population density on survival and reproduc-

tive traits (e.g. [33]). In the red wolf population, we have

Figure 2. Annual population growth rate in relation to anthropogenic mortality rate of the red wolf. Model-corrected values are shown.
doi:10.1371/journal.pone.0020868.g002

Additive Effects of Anthropogenic Mortality
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previously demonstrated that key life-history traits such as lifetime

reproductive success and survival from age 1 to 2 do show signs of

being density-dependent [25,34]. In this study we found a

marked decline in the recruit-to-female ratio in relation to

increasing numbers of adult females over time (F1,17 = 14.44;

P = 0.001; Fig 4A). There are four potential explanations for this

phenomenon: (1) increased anthropogenic mortality of pups with

increasing density; (2) decreased pup productivity per female with

density; (3) decreased pup recruitment per female with density;

and/or (4) decreased proportion of reproductive females as

density increases. We were unable to evaluate (1) – (2), as

information on causes of death and survival rates of pups from

birth was limited. As for (3), we found no evidence of an effect of

density on recruited litter size. However, (4) alone is a highly

plausible explanation, as there was a dramatic reduction in the

proportion of adults that became reproductive as density has

increased since reintroduction in 1987, declining from 68% to

41% of adults on average (n = 206; time period—x2 = 9.02,

P = 0.0110; Sex— x2 = 2.43, P = 0.119; Sex*time period—

x2 = 5.05, P = 0.0800; Fig. 4B).

Given that only half of the packs with a single breeder lost to

anthropogenic mortality managed to transition to a new breeding

pair, and only 56% (n = 34) of these new pairs successfully

produced a litter the following year, there is potential for a multi-

year lag in productivity in a given home range following the

dissolution of a breeding pair. However, the relatively low

proportion of adults older than two years of age that become

reproductive in this population at high density (Fig. 4A), and the

decreasing per capita recruitment with increasing density (Fig. 4B)

suggest that there is high potential for compensatory mechanisms

to come into play in the long-term (i.e., within the next several

years), if not in the short-term (i.e., within a single year). In other

words, in spite of being additive, anthropogenic mortality of adults

and its effects on breeding pairs and recruitment may not have

substantial long-term ramifications due to an apparent super-

abundance of adults constrained from breeding due to density-

related factors. The degree to which population density and/or

anthropogenic mortality are responsible for the relatively stable

Figure 3. Least-square means and standard errors of the means of the number of red wolf recruits per litter according to pack
status. Letters indicate significant differences from a post-hoc comparison of least-square means.
doi:10.1371/journal.pone.0020868.g003

Figure 4. Effects of increasing population density over time on
the reintroduced red wolf population. Annual ratio of recruits to
adult females in relation to the total number of female red wolves over
2 years of age (a), and the proportion of male and female adults over 2
years of age that become reproductive in three different time periods
(b).
doi:10.1371/journal.pone.0020868.g004
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size of the red wolf population from 1999–2006 is currently

unknown. However, at this stage, the prevalence of non-breeding

adults predicts high resiliency, given a release from either

anthropogenic pressures and/or density-related constraints.

Conclusion
We have provided evidence that anthropogenic mortality has

additive effects on a reintroduced population of red wolves

particularly at low density. These additive effects appear to be

manifest through reduced annual survival translating to reduced

population growth rate. We also found that packs disbanding after

loss of a breeder show reduced numbers of recruits relative to

stable packs. However, though anthropogenic mortality appears to

have an additive effect on the annual rate of pair dissolution, there

is little evidence that the disbanding of packs influences population

growth rate per se, as natural rates of pair dissolution were not

related to population growth. These findings are particularly

interesting given that our population was essentially closed to

dispersal, and thus our assessment of potential compensatory

effects was restricted to on-site demographic changes. Finally, in

spite of lack of evidence for compensation for direct anthropogenic

mortality in the short term, the large proportion of non-

reproductive adults at high density suggests potential for recovery

from anthropogenic mortality in the long-term, as new breeding

pairs take up residence in home ranges left vacant by disbanded

packs.
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